
Objectif de la séance
Cette première séance de travaux pratiques a avant tout un objectif introductif et ne devrait pas durer
longtemps. Elle vise principalement à faire connaissance : nous prendrons le temps de nous présenter
et de vous présenter l’organisation générale des travaux pratiques du semestre (contenu, modalités,
attentes, et outils utilisés).

Nous commencerons également le premier TP au cours de cette séance.

Nous donnerons aussi quelques indications sur le déroulement des futurs TPs ainsi que sur le lien entre
les séances de TP et le cours magistral.

Enfin, nous serons à votre disposition pour échanger et répondre à vos questions concernant un éventuel
rappel d’algèbre linéaire, nécessaire pour aborder sereinement la suite du cours.

Algèbre linéaire : concepts à maîtriser

Ce chapitre est inspiré du cours théorique du Professeur Mark Goldman, de UC Davis, lors de la
summer school "Methods in Computational Neuroscience". Le podcast est disponible via ce lien 1.

1 Rappels sur les matrices
• Addition de matrices :

On additionne les éléments un à un.(
1 2
3 4

)
+
(

5 6
7 8

)
=
(

6 8
10 12

)
• Multiplication d’un vecteur par un scalaire a #»x : chaque élément est multiplié par le scalaire. Sur

le dessin, le vecteur reste dans la même direction mais change de longueur.

• Produit de deux vecteurs :
(1) Produit élément par élément : (

a1
a2

)
. ∗
(

b1
b2

)
=
(

a1b1
a2b2

)

(2) "Dot product" (aussi appelé "inner product") :

1. https ://mbl.hosted.panopto.com/Panopto/Pages/Viewer.aspx ?id=c1f959d8-8753-4eb9-85ee-aee10166a2d7
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Intuitivement, on peut aussi représenter ce calcul en dessinant les vecteurs.

Le cosinus de l’angle formé par les deux vecteurs donne une indication de la superposition des
deux vecteurs. Le produit est maximum quand les deux vecteurs sont superposés.

(3) "Outer product" :

• Multiplication d’une matrice et d’un vecteur :
(1) en utilisant le "inner product" : l’élement i du vecteur y est obtenu en calculant le dot product
entre la i-ème rangée de W avec x.

(2) en utilisant le "outer product" :
Le produit est la somme pondérée des colonnes de W avec les entrées de x.

On peut visualiser ce calcul graphiquement :

• Produit de deux matrices :
(1) en utilisant le "inner product" :
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L’élément ij s’obtient en calculant le "inner product" de la i-ème rangée de A avec la j-ième
colonne de B : Cij = ∑

k=1 AikBkj

(2) en utilisant le "outer product" :
La matrice C est le "outer product" entre les colonnes de A et les rangées de B.

2 Vecteurs propres et valeurs propres
Introduction
Que font les matrices aux vecteurs ?

Existent-ils des vecteurs "spéciaux" qui ne subissent qu’une mise à l’échelle ?
Si on utilise par exemple le vecteur colonne écrit (1, 1)T :

Pour ce vecteur "particulier", multiplier
↔
M par ce vecteur donne exactement la même chose que multi-

plier le vecteur par un scalaire. Ce vecteur est appelé vecteur propre de
↔
M et le facteur de multiplication

est la valeur propre associée à ce vecteur propre. Mathématiquement, on écrit :
↔
M #»e = λ #»e , où #»e dé-

note un vecteur propre de
↔
M . Les vecteurs propres sont définis à un scalaire près. Par convention, on

indique souvent le premier élément du vecteur égal à 1.
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Comment calculer les valeurs propres et les vecteurs propres ?
Il suffit de résoudre l’équation : (

↔
M −λ

↔
1 ) #»e = 0 pour #»e ̸= 0, avec

↔
1 la matrice identité de même taille

que
↔
M . Cela revient à calculer cette expression : det(

↔
M − λ

↔
1 ) = 0. On appelle cette expression le

polynôme caractéristique pour λ. Une fois les valeurs propres identifiées, les vecteurs propres associés
peuvent être déterminés en remplaçant λ dans (

↔
M − λ

↔
1 ) #»e = 0.

Pour plus d’informations, consultez cette vidéo 2 (de la chaîne YouTube 3blue1brown).

Applications
On utilise souvent le calcul des valeurs propres et des vecteurs propres dans le domaine de la réduction
de dimensionnalité, par exemple dans la technique d’ "Analyse en Composantes Principales" ("Princi-
pal Component Analysis" (PCA), en anglais). Les vecteurs propres permettent de calculer la direction
de variance maximale dans les données.
Plus d’informations sur la PCA :
- lien 1 3

- lien 2 4

3 Résolution d’équations différentielles linéaires

Équation différentielle à 1D sans entrée

On démarre avec une équation différentielle à 1D (à coefficient constant) :

ẋ = −ax

En bac 1, la résolution analytique pour cette équation a été détaillée :

x(t) = x(0)e−at

Si a est positif, il s’agit d’une exponentielle décroissante car le coefficient sur l’exponentielle est négatif.
La fonction démarre à la condition initiale x(0) et converge vers 0 (courbe bleue sur la figure ci dessous).
Dans le cas contraire, si le coefficient de l’exponentielle est positif, la fonction diverge (courbe orange).
On peut également écrire cette expression à l’aide d’une constante de temps, τx :

τxẋ = −x

La constante de temps décrit la rapidité avec laquelle x tend vers 0 (quand l’exponentielle est décrois-
sante). Plus la valeur est grande, plus la convergence est lente.

t

Exp· négative

Exp· positive
<latexit sha1_base64="ahkIxHgOPLEk5QOzd4GCr59Y8Sg=">AAACx3icjVHLSsNAFD2Nr1pfVZdugkWpm5JIUZcFN7qrYB9QiyTptB3Mi8mktBQX/oBb/TPxD/QvvDOmoBbRCUnOnHvPmbn3urHPE2lZrzljYXFpeSW/Wlhb39jcKm7vNJMoFR5reJEfibbrJMznIWtILn3WjgVzAtdnLffuXMVbIyYSHoXXchKzbuAMQt7nniMVNS7Lo9tiyapYepnzwM5ACdmqR8UX3KCHCB5SBGAIIQn7cJDQ04ENCzFxXUyJE4S4jjPco0DalLIYZTjE3tF3QLtOxoa0V56JVnt0ik+vIKWJA9JElCcIq9NMHU+1s2J/855qT3W3Cf3dzCsgVmJI7F+6WeZ/daoWiT7OdA2caoo1o6rzMpdUd0Xd3PxSlSSHmDiFexQXhD2tnPXZ1JpE16566+j4m85UrNp7WW6Kd3VLGrD9c5zzoHlcsU8q1atqqXaYjTqPPeyjTPM8RQ0XqKNB3kM84gnPxqURGSNj/Jlq5DLNLr4t4+EDrQ6QTQ==</latexit>

x(t)

<latexit sha1_base64="Wl6qfehUxTajNZVrrSalONU0guo="></latexit>

x(0)

Équation différentielle à 1D avec entrée

On peut compliquer l’équation et faire intervenir une constante b (dans le reste du cours, on appellera
cela une entrée au système) telle que :

ẋ = −ax + b

2. https ://www.youtube.com/watch ?v=PFDu9oVAE-g
3. https ://towardsdatascience.com/principal-component-analysis-pca-explained-visually-with-zero-math-

1cbf392b9e7d
4. https ://www.sartorius.com/en/knowledge/science-snippets/what-is-principal-component-analysis-pca-and-how-

it-is-used-507186
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On peut réécrire : ẋ = −a(x − b/a).

Pour résoudre facilement cette équation, on va revenir au cas précédent car on connaît la solution de
cette équation. Pour cela, il suffit de poser u = x − b/a. L’équation devient :

u̇ = −au

La solution est donnée par :
u(t) = u(0)e−at

Il suffit de remplacer pour retrouver la solution en terme de x :

x(t) − b/a = (x(0) − b/a)e−at

Graphiquement, x converge vers son état stationnaire ("steady-state" en anglais) à partir de sa condi-
tion initiale. On comprend que c’est la différence entre la condition initiale et la valeur à l’infini qui
décroit au cours du temps.

t

<latexit sha1_base64="ahkIxHgOPLEk5QOzd4GCr59Y8Sg="></latexit>

x(t)
<latexit sha1_base64="Wl6qfehUxTajNZVrrSalONU0guo="></latexit>

x(0)

<latexit sha1_base64="n9PybsIweRiKFVh7nhGz0lrNFw0="></latexit>x1

On peut écrire une forme générale pour une équation différentielle de premier ordre :

τxẋ = x∞ − x

♡ Cette équation se lit telle que x converge vers x∞ avec une constante de temps τx.

Leurs valeurs sont données par τx = 1/a et x∞ = b/a (la valeur de l’entrée divisée par le facteur de
l’exponentielle). La réponse du système écrit sous cette forme est donnée par :

x(t) = (x(0) − x∞)e−t/τx + x∞

Systèmes d’équations différentielles

On passe maintenant à un système d’équations différentielles :

ẋ1 = M11x1 + M12x2 + I1

ẋ2 = M21x1 + M22x2 + I2

On peut écrire matriciellement cette expression :

#̇»x =
↔
M #»x + #»

I

Les deux variables x1 et x2 sont couplées. Pour obtenir la solution analytique de x1, on a besoin
de celle de x2 et vice-versa. Pour résoudre ce système, il faut suivre une procédure en 4 parties. Le
but est d’exprimer les équations dans un nouveau système de coordonnées où les deux variables sont
découplées. On revient ainsi au cas simple à 1D présenté ci-dessus.

étape 1 : On calcule les valeurs propres et les vecteurs propres.
En effet,

↔
M est la matrice de couplage. On peut donc utiliser les vecteurs propres pour transformer

cette matrice :
↔
M #»e = λ #»e .
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étape 2 : On décompose #»x et #»

I selon les deux vecteurs propres associés à
↔
M :

#»x = ∑
i ci

#»e (i) = c1
#»e (1) + c2

#»e (2)
#»

I = ∑
i bi

#»e (i) = b1
#»e (1) + b2

#»e (2)

On ne connaît pas les termes c1 et c2 car ils correspondent aux solutions analytiques de x1 et x2 dans
le nouveau système de coordonnées (i.e. le système donné par les directions des vecteurs propres).
Ce sont encore des inconnues à ce stade-ci. Les valeurs de b1 et b2 peuvent être estimées soit par
identification des coefficients, soit en calculant analytiquement le produit #»

b =
↔

E−1 #»

I , avec
↔

E−1 la
matrice des vecteurs propres, i.e. chaque colonne est un vecteur propre.

étape 3 : On injecte b et c dans le système pour remplacer #»x 5.

d

dt

(
N∑
i

ci
#»e (i)

)
=

↔
M
(∑N

i ci
#»e (i)

)
+∑N

i bi
#»e (i)

N∑
i

dci

dt
#»e (i) = ∑

ci

↔
M #»e (i) +∑N

i bi
#»e (i)

N∑
i

dci

dt
#»e (i) = ∑

ciλi
#»e (i) +∑N

i bi
#»e (i)

C’est ici que la "magie" s’opère car on remplace un système d’équations différentielles couplées via la
matrice

↔
M par un système d’équation différentielle de premier ordre. Ce nouveau système découplé est

facile à résoudre, en utilisant simplement les résultats obtenus aux sections précédentes. On peut faire
cela car on passe du système de coordonnées (x1, x2) au système de coordonnées (e(1), e(2)) dans lequel
les variables ne sont plus couplées. On obtient donc deux équations différentielles simples d’ordre 1 6 :

dc1
dt

= λ1c1 + b1

dc2
dt

= λ2c2 + b2

La solution s’obtient facilement :

c1(t) = (c1(0) − c1,∞)eλ1t + c1,∞

c2(t) = (c2(0) − c2,∞)eλ2t + c2,∞

avec c1,∞ = −b1/λ1, c2,∞ = −b2/λ2. Pour le calcul des conditions initiales, on sait que #»x =
↔
E #»c . On

peut donc écrire

x1(0) = c1(0)e(1)
1 + c2(0)e(2)

1

x2(0) = c1(0)e(1)
2 + c2(0)e(2)

2

Il suffit de résoudre ce système pour trouver c1(0) et c2(0) sur base des conditions initiales données en
x1(0) et x2(0).

étape 4 : On écrit le système de solutions pour x1(t) et x2(t) :

x1(t) = c1(t)e(1)
1 + c2(t)e(2)

1

x2(t) = c1(t)e(1)
2 + c2(t)e(2)

2

5. On laisse tomber les indices sur le symbole sommatoire pour alléger le calcul.
6. Prendre note du changement de convention pour les signes : au lieu d’avoir −a devant la variable x comme dans

les paragraphes précédents on a λ.
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Exemple
On considère le système d’équations différentielles suivant,

ẋ1 = 0x1 + 3x2 − 2
ẋ2 = 2x1 + x2 + 3,

avec les conditions initiales x1(0) = 0 et x2(0) = 0. On peut déduire la matrice de couplage et la
matrice d’entrée :

↔
M =

(
0 3
2 1

)
,

#»

I =
(

−2
3

)
On peut résoudre ce système à l’aide des 4 étapes détaillées ci-dessus :

étape 1 : Calcul des valeurs propres et des vecteurs propres :

det(
↔
M − λ

↔
1 ) = 0 ⇐⇒ λ1 = 3 et λ2 = −2.

Les vecteurs propres associés sont ceux donnés par :

 (
↔
M − λ1

↔
1 )

#    »

e(1) = 0
(

↔
M − λ2

↔
1 )

#    »

e(2) = 0
⇐⇒



#    »

e(1) =
(

1
1

)

#    »

e(2) =
(

−1.5
1

)
.

étape 2 : On décompose l’entrée dans le nouveau système de coordonnées :

↔
I =

(
−2
3

)
= b1

(
1
1

)
+ b2

(
−1.5

1

)

Pour calculer b1 et b2, on peut soit faire par inspection et trouver les coefficients qui donnent le vecteur
↔
I directement, soit utiliser la formule : #»

b =
↔

E−1 #»

I . Par inspection, on trouve ici que b1 = 1 et b2 = 2.

étape 3 : On trouve la solution pour c1(t) et c2(t) en remplaçant dans la formule démontrée ci-dessus
avec c1,∞ = −b1/λ1, c2,∞ = −b2/λ2 et les conditions initiales telles que c1(0) = 0 et c2(0) = 0 :

c1(t) = (c1(0) − c1,∞)eλ1t + c1,∞ = −1/3 + 1/3e3t

c2(t) = (c2(0) − c2,∞)eλ2t + c2,∞ = 1 − 1e−2t.

étape 4 : On utilise les solutions trouvées en c(t) pour décrire la réponse en x(t) :

x1(t) = c1(t)1 + c2(t)(−1.5) = −1/3 + 1/3e3t + (−3/2) + (3/2)e−2t

x2(t) = c1(t)1 + c2(t)1 = −1/3 + 1/3e3t + 1 − e−2t

♡ Il est intéressant de noter que la dynamique du système est gouvernée par les valeurs propres.

Notions clés
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• Calculs élémentaires avec les vecteurs et les matrices
• Comprendre géométriquement les opérations dans le plan
• Être capable de calculer les vecteurs propres et valeurs propres d’une matrice
• Comprendre l’interprétation géométrique des vecteurs propres et des valeurs propres
• Résoudre une équation différentielle simple avec et sans entrée
• Comprendre l’utilisation des vecteurs propres et valeurs propres dans le découplage d’un système
d’équations différentielles
• Découpler un système d’équations différentielles et résoudre entièrement le système

4 Exercices à faire

Exercice 1 = Devoir 1 (2020)
Le système dynamique à deux dimensions est caractérisé par les équations différentielles suivantes :(

ẋ
ẏ

)
=
(

1 1
16 1

)(
x
y

)

Calculer x(t) et y(t) à l’aide des valeurs propres et des vecteurs propres et discuter la stabilité du
système.

Schéma de résolution : découplage d’équation différentielle
1- Rechercher les valeurs propres et les vecteurs propres
2- Décomposer les variables x et y selon les vecteurs propres (directions préféren-

tielles pour découpler le système)
3- Remplacer le système ẋ, ẏ par sa décomposition en considérant des conditions

initiales génériques
4- Résoudre le système et obtenir x(t), y(t)
5- Discuter la stabilité

Remarque : Essayer de bien comprendre les différents termes qui apparaissent dans la
résolution de votre système d’équations différentielles linéaires couplées.
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Solutions des exercices

Algèbre linéaire : concepts à maîtriser
Exercice 1

Rappel énoncé : (
ẋ
ẏ

)
=
(

1 1
16 1

)
︸ ︷︷ ︸

A

(
x
y

)

Calculer x(t) et y(t) à l’aide des valeurs propres et des vecteurs propres et discuter la stabilité du
système.

Solution :
étape 1 : Les valeurs propres du système, après annulation du polynôme caractéristique (i.e. det(A −
λI) = λ2 − 2λ − 15 = 0), sont données par

λ1 = 5, λ2 = −3.

Les vecteurs propres associés (i.e. résolution de (A − λiI)(
#   »

e(i)) = 0, i ∈ {1, 2}) sont eux donnés par

#    »

e(1) =
(

1
4

)
,

#    »

e(2) =
(

1
−4

)
.

étape 2 : La décomposition de x(t) et y(t) donne{
x(t) = c1(t)e(1)

1 + c2(t)e(2)
1

y(t) = c1(t)e(1)
2 + c2(t)e(2)

2 .

avec

c1(t) = (c1(0) − c1,∞)eλ1t + c1,∞

c2(t) = (c2(0) − c2,∞)eλ2t + c2,∞

où c1,∞ = −b1/λ1 = 0 et c2,∞ = −b2/λ2 = 0 puisqu’il n’y a aucune entrée externe appliquée ni à x
(→ b1 = 0), ni à y (→ b2 = 0).

étape 3 : En considérant les conditions génériques c1(t = 0) = c1(0) et c2(t = 0) = c2(0), on obtient le
nouveau système {

c1(t) = c1(0)eλ1t = c1(0)e5t

c2(t) = c2(0)eλ2t = c2(0)e−3t.

étape 4 : La solution s’écrit donc {
x(t) = c1(0)e5t + c2(0)e−3t

y(t) = 4c1(0)e5t − 4c2(0)e−3t.

Au niveau de la stabilité,les deux trajectoires x(t) et y(t) sont caractérisées par des valeurs propres
réelles de signe contraires. Les 2 trajectoires vont finalement diverger (puisqu’elles tendent vers l’infini
si on considère le comportement pour t → ∞). Le système est donc globalement instable.
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TP1 : Signaux, systèmes et leurs propriétés

1 Concept

1.1 Distinction entre système et signal

Un système peut être vu comme une boite noire qui transforme un certain nombre de signaux d’entrée
en un certain nombre de signaux de sortie.
- But : modéliser un processus.
- Domaines d’application : biologie, chimie, électricité, mécanique, finance, . . .

Le concept de système peut être schématisé comme ci-dessous : on s’intéresse à la transformation des
entrées en sorties.

Signaux d’entrée Système Signaux de sortie

La Figure 1 illustre le principe de modélisation d’un neurone sous forme de système. L’expérimentateur·rice
injecte du courant dans un neurone de rat et s’intéresse à la tension membranaire mesurée en sortie.
La dynamique interne du neurone peut être modélisée par une "boite noire".

time

C
ou
ra
nt

time

T
en
si
on

Figure 1 – Exemple de système : mesure de la tension au niveau d’un neurone

Un signal transporte l’information d’un point à un autre alors qu’un système agit sur le signal dit
"d’entrée" pour en produire une version modifiée, dite "de sortie".

Un signal peut être continu, comme par exemple un courant électrique ou une onde acoustique, mais
également discret, comme par exemple une représentation digitale d’un signal audio (MP3) ou d’une
image (JPEG). On parle également de signaux analogiques et numériques. Lorsque ce signal évolue
en fonction du temps, on parlera de signal temps-continu et temps-discret, respectivement.

Mathématiquement, cette distinction vient de la variable indépendante, qui peut être :
- soit continue (généralement t), on écrira alors u(·) pour représenter le signal temps-continu u.

Le domaine 7 de la variable indépendante est un ensemble continu (ex : R).
- soit discrète (généralement n), on écrira alors u[·] pour représenter le signal temps-discret u. Le

domaine de la variable indépendante est un ensemble discret (ex : N).

7. L’ensemble des valeurs de la variable indépendante pour lesquelles le signal est défini.
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La variable indépendante continue est fréquemment le temps t mais il peut également s’agir d’une
distance, de la pression, de la température, etc. Une variable indépendante discrète peut impliquer
une discrétisation d’une variable continue, comme par exemple la discrétisation de l’espace en pixels
discrets pour la représentation numérique d’une image.

Par exemple, considérons un microphone. Celui-ci peut être vu comme un système qui convertit une
pression (due au mouvement de l’air) en un signal électrique.

p(t) Système v(t), i(t)

Ces signaux sont continus dans le temps (la variable indépendante). On parlera d’un système continu,
ou analogique. Si les signaux en sortie sont convertis en signaux discrets pour, par exemple, un traite-
ment numérique par ordinateur du son enregistré, ce système de traitement sera alors considéré comme
un système discret, ou numérique.

Un système est alors dit continu (resp. discret) s’il manipule des signaux continus (resp. discrets).
Cette distinction vient du domaine des signaux.

1.2 Transformations de signaux

Lorsqu’un signal traverse un système, ce signal est transformé. Voici un récapitulatif des transforma-
tions affines, i.e. les opérations de base que peut subir un signal.

Décalage temporel

u(t) t − σ y(t) = u(t − σ)

• σ > 0 : décalage vers la droite. Intuitivement, t − σ représente un retard de σ secondes.
Cette transformation peut être illustrée par le schéma ci-dessous qui représente un courant qui
varie au cours du temps. Au temps t = 0, l’expérimentateur·rice mesure initialement 2[A]. Si le
signal est retardé d’une seconde par un système, l’expérimentateur·rice mesurera 0[A] au lieu
de 2[A] en t = 0. En effet, la courbe s’est déplacée d’une unité vers la droite car elle a subi un
retard.

t

u(t)

0 1 2 3 4−1−2−3−4

1
2

t

u(t − 1)

0 1 2 3 4−1−2−3−4

1
2

• σ < 0 : décalage vers la gauche. Le signal est avancé.

t

u(t)

0 1 2 3 4−1−2−3−4

1
2

t

u(t + 1)

0 1 2 3 4−1−2−3−4

1
2

Inversion temporelle

u(t) −t y(t) = u(−t)

Rotation de 180° selon l’axe des ordonnées = miroir selon l’axe des y.

11



t

u(t)

0 1 2 3 4−1−2−3−4

1
2

t

u(−t)

0 1 2 3 4−1−2−3−4

1
2

Dilatation ou contraction

u(t) t
a y(t) = u( t

a)

• a > 1 : t → t
a . Mathématiquement, la constante a affecte le signal selon l’axe des abscisses.

Autrement dit, le signal est dilaté. Le temps est "divisé par a", ce qui implique que le signal
s’étale sur une durée a fois plus longue (dilatation). Cependant, l’amplitude du signal reste
inchangée. Par exemple, lorsqu’une musique est jouée sur un MP3, si la vitesse d’écoute du MP3
est modifiée (vitesse ×1

2) : le signal sonore est étalé dans le temps. Les sons sont prononcés plus
lentement mais l’amplitude reste la même.

t

u(t)

0 1 2 3 4−1−2−3−4

1
2

t

u(t/2)

0 1 2 3 4 5 6−1−2−3−4

1
2

• a < 1 =⇒ 1
a > 1 : (ex. t

0.5 = 2t). A l’inverse du cas précédent, cette fois, le bouton ×2 du MP3
est pressé, le signal sonore (ou la vidéo, dans un autre contexte) est accéléré. Les informations
contenues dans le son défilent plus vite et donc ce dernier est contracté. Une nouvelle fois, seule
la variable indépendante est modifiée par cette transformation et non l’amplitude du son (ou
dans l’exemple de la vidéo, le contenu visuel est inchangé, seul le nombre d’images par seconde
est affecté).

t

u(t)

0

1
2

1 2−1 3−2 t

u(2t)

1
2

0 1
2 1 3

2 2−1
2−1

Transformation combinée :

y(t) = u

(
t

a
− σ

)
Que faire lorsque le signal subit plusieurs transformations ? Dans quel ordre faut-il appliquer les trans-
formations ? En règle générale, il faut les appliquer dans l’ordre inverse de la priorité des opérations.

Une transformation combinée (par exemple avec a = 2 et σ = −1 tel que y(t) = u
(

t
2 + 1

)
) peut être

décomposée sous forme de deux sous-systèmes. La sortie du premier sous-système est notée ytemp(t)
et agit comme entrée du deuxième sous-système.

• Que se passe-t-il si le décalage (addition) a lieu avant la contraction/dilatation (multiplication)
comme illustré ci-dessous par la combinaison des deux sous-systèmes ?

u(t) +1 ytemp(t) ×1
2 y(t)

12



◦ 1er sous-système : Décalage ytemp(t) = u(t − σ)

t

u(t)

0 1 2 3 4−1−2−3−4

1
2

t

u(t + 1)

0 1 2 3 4−1−2−3−4

1
2

Pour σ = −1 < 0 (décalage vers la gauche) ; cela correspond donc à un signal en avance de 1.

◦ 2ème sous-système : Contraction/Dilatation y(t) = ytemp( t
a) = u( t

a − σ)

t

ytemp(t)

0 1 2 3 4−1−2−3−4

1
2

t

y(t) = ytemp(t/2)

0 1 2 3 4−1−2−3−4
1
2

Pour a = 2 > 1, le signal est dilaté selon l’axe des abscisses.

C’est bien dans cet ordre qu’il faut effectuer les opérations.
Si on inverse les deux étapes, on inverse les deux sous-systèmes et on obtient une autre sortie que celle
attendue :

u(t) −→ ytemp(t) = u

(
t

2

)
ytemp(t) −→ y(t) = ytemp(t + 1) = u

(
t + 1

2

)
ce qui n’était pas le résultat attendu.

• Pour une autre transformation combinée :

y(t) = u

(
t − σ

a

)

avec u
(

t+1
2
)
. La transformation combinée est décomposée en deux sous-systèmes et fait appel à un

signal intermédiaire ytemp(t).
◦ 1er sous-système : Contraction/Dilatation ytemp(t) = u( t

a)

t

u(t)

0 1 2 3 4−1−2−3−4

1
2

t

u(t/2)

0 1 2 3 4 5 6−1−2−3−4

1
2

Pour a = 2 > 1, le signal est dilaté selon l’axe des abscisses.

◦ 2ème sous-système : Décalage y(t) = ytemp(t − σ) = u( t−σ
a )

t

ytemp(t)

0 1 2 3 4 5 6−1−2−3−4

1
2

t

y(t) = ytemp(t + 1)

0 1 2 3 4 5 6−1−2−3−4

1
2

Pour σ = −1 < 0, cela correspond à un signal en avance de 1.
Au bilan, la division est effectuée AVANT l’addition car elle porte sur tout le numérateur. Cela peut
être vu comme des parenthèses (t − σ)/a :

13



u(t) ×1
2 ytemp(t) +1 y(t)

C’est bien dans cet ordre qu’il faut effectuer les opérations. Si l’addition est exécutée avant la multi-
plication, le signal serait modifié comme ceci :

u(t) −→ ytemp(t) = u(t + 1)

ytemp(t) −→ y(t) = ytemp

(
t

2

)
= u

(
t

2 + 1
)

ce qui n’est pas le résultat attendu.

♡ Astuce mnémotechnique : l’opération qui est la plus "proche" de la variable indépendante est effectuée
en dernier car cette opération correspond bien à l’action du dernier sous-système.

1.3 Propriétés des signaux
• Périodique

Mathématiquement, un signal x(t) est périodique s’il ∃ T ∈ R tel que x(t) = x(t + T ) , ∀t.
Exemple : x(t) = sin(t)

t

x(t)

0
t

x(t + T )

0

• Pair ou impair

Pair

x(t) = x(−t), ∀t

Symétrie orthogonale d’axe
égal à l’axe des ordonnées.
Exemple : x(t) = cos(t)

t

x(t)

0

Impair

x(t) = −x(−t), ∀t

Symétrie centrale par l’origine
des axes.
Exemple : x(t) = 3√t

t

x(t)

0

Utilité ? Un signal peut toujours être décomposé en une somme de signaux pairs et impairs :

x(t) = 1
2
(
x(t) − x(−t)

)︸ ︷︷ ︸
Signal impair

+1
2
(
x(t) + x(−t)

)︸ ︷︷ ︸
Signal pair

1.4 Propriétés des systèmes
Continu

Un signal continu en entrée donne un si-
gnal continu en sortie.

u(t) Système y(t)

Discret
Un signal discret en entrée donne un si-
gnal discret en sortie.

u[n] Système y[n]

Hybride (1)
Un signal discret en entrée donne un si-
gnal continu en sortie.

u[n] Système y(t)

Hybride (2)
Un signal continu en entrée donne un si-
gnal discret en sortie.

u(t) Système y[n]
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• Univoque
Un système est dit univoque si à une entrée u(t) n’est associée qu’une et une seule sortie y(t).

• Statique
Un système statique est un système dont la sortie à un instant t∗ ne dépend que de l’entrée à cet
instant t∗ : y(t∗) = S{u(t∗)}, où on note y(t) = S{u(t)} le fait que y(t) soit la sortie du système
S associée à l’entrée u(t). On dira que le système ne possède pas de mémoire, qu’il n’est fonction
que de l’entrée présente.

• Dynamique
Un système dynamique est un système dont la sortie dépend du présent, mais aussi de valeurs
de l’entrée à d’autres instants.

• Causal
Un système est dit causal si la sortie à un instant t∗ ne dépend que de l’entrée en t∗ et des entrées
précédentes, i.e. aux instants t ≤ t∗ : y(t∗) = S{u(t∗), u(t∗ − dt), u(t∗ − 2dt), ...} = S{u(t̃)} , t̃ ≤
t∗. Par convention, un système statique est causal. À noter que tout système physique est causal.
Exemple : On considère le mouvement d’un chariot, sa position est la sortie du système et l’entrée
est la force exercée sur le chariot. À un instant donné, la position du chariot dépendra de la force
appliquée, mais aussi des forces précédemment appliquées, déterminant sa position actuelle.

u(t + 1)

u(t)

u(t − 1)

u(t − 2)

Système y(t)

Remarque : À ce stade, la dérivée est considérée comme une opération causale : u̇(t) = lim
z→0+

u(t)−u(t−z)
z .

Pour le moment, on dira donc qu’un système décrit par une équation différentielle est causal,
sans plus de détail.

• Anticausal
Un système est dit anticausal si la sortie à un instant t∗ ne dépend que de l’entrée en t∗ et des
entrées futures t ≥ t∗ : y(t∗) = S{u(t∗), u(t∗ + dt), u(t∗ + 2dt), ...} = S{u(t̃)} , t̃ ≥ t∗.

u(t + 1)

u(t)

u(t − 1)

u(t − 2)

Système y(t)

• Non causal
Un système est dit non causal s’il n’est ni causal, ni anti-causal.

• Additif
Un système est dit additif s’il vérifie la propriété suivante :{

y1(t) = S{u1(t)}
y2(t) = S{u2(t)} ⇒ ytot = S{utot(t)} = S{u1(t)+u2(t)} = S{u1(t)}+S{u2(t)} = y1(t)+y2(t).
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Cette propriété peut être facilement illustrée graphiquement :

t

u1(t)

1

0 1 2−1−2

t

u2(t)

1

0 1 2−1−2

t

utot(t) = u1(t) + u2(t)

2
1

0 1 2−1−2

S

S

S

t

y1(t)

A

0 1 2−1−2

t

y2(t)

A

0 1 2−1−2

t

ytot(t)

A

2A

0 1 2−1−2

• Homogène
Un système est dit homogène s’il vérifie la propriété suivante :

y(t) = S{u(t)} ⇒ λy(t) = S{λu(t)}.

Cette propriété peut être facilement illustrée graphiquement :

t

λu1(t)

λ

0 1 2−1−2

S

t

λy1(t)

λA

0 1 2−1−2
• Linéaire

Un système est dit linéaire s’il est additif et homogène. Mathématiquement, il vérifie donc la
propriété suivante{

y1(t) = S{u1(t)}
y2(t) = S{u2(t)} ⇒ αy1(t) + βy2(t) = S{αu1(t) + βu2(t)} , ∀α, β ∈ R

• Temps-invariant
Un système est dit invariant dans le temps lorsque la loi qu’il établit entre entrées et sorties ne
change pas au cours du temps. Autrement dit, si un décalage temporel est appliqué à l’entrée,
ce décalage se retrouve également à la sortie. Ainsi, on a la propriété

y(t) = S{u(t)} ⇒ y(t − τ) = S{u(t − τ)}

Remarque : Le cours portera principalement sur les systèmes linéaires temps-invariant (LTI). Nous
étudierons les outils spécifiques à cette catégorie de système. Il est donc important de comprendre les
différentes notions expliquées ci-dessus.

Notions clés

• Distinguer signaux et systèmes
• Maîtriser les transformations de signaux
• Identifier les propriétés des systèmes (linéarité, causalité, invariance)
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2 Exercices résolus au tableau

Exercice 1 = Exercice 1.2 (a)-(c) [TXB]

Soit le signal continu x(t) représenté ci-dessous.

t

x(t)

−2 −1 1 2
−1

2

1
Tracer les signaux suivants.
(a) x(t − 1)
(c) x(2t + 1)

Schéma de résolution : transformation affine
• Identifier la transformation : décalage temporel vers la droite/gauche ? inversion

temporelle ? contraction/dilatation ? transformation affine ?
• S’il y a plusieurs transformations, identifier l’ordre des opérations INVERSES (ou

utiliser l’astuce mnémotechnique)
• Dessiner les transformations

Exercice 2 = Exercice 3.1 (a)-(b) [TXB]

Déterminer si le système continu correspondant à la relation entrée-sortie donnée ci-après est
• dynamique ou statique ;
• causal, anticausal ou non causal ;
• linéaire ou non ;
• variant ou invariant.

(a) y(t) = u(t − 2) + u(2 − t)
(b) y(t) = cos(3t)u(t)
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Schéma de résolution : identifier les propriétés des systèmes
• Statique-dynamique ? Pour rappel, un système est statique si y(t∗) ne dépend que

de la valeur de l’entrée en t = t∗.
• Causalité ? Pour rappel, un système est causal si y(t∗) ne dépend que de la valeur

de l’entrée en t ≤ t∗.
• Linéarité ? Pour déterminer si le système est linéaire, il suffit de démontrer que

tout combinaison αu1 + βu2 donne une sortie αy1 + βy2.
En pratique, une autre façon de voir si un système est linéaire est de regarder si
les entrées u /sorties y/signaux x (plus généralement, les variables dépendantes)
sont exprimées/modifiées par une fonction non linéaire. Cela n’a donc pas de
rapport avec "t" (c-à-d la variable indépendante), mais bien uniquement avec les
fonctions qui sont appliquées sur les entrées/sorties/signaux.

• Temps-variant ou temps-invariant ? Pour rappel, un système est dit invariant dans
le temps lorsque la loi qu’il établit entre entrées et sorties ne change pas au cours
du temps, c’est-à-dire si l’équation ne dépend pas explicitement de la valeur de
la variable indépendante.
En pratique, on peut d’abord regarder si le système dépend de la variable indé-
pendante t, i.e. regarder si les coefficients de l’équation sont dépendants du temps
(autrement dit, si à des instants différents, les coefficients prennent des valeurs
différentes). De manière générale, il faut tester si un décalage temporel à l’entrée
se retrouve également en sortie, i.e. tester si (u(t − τ), y(t − τ)) est un couple
entrée-sortie valable pour le système étant donné que (u(t), y(t)) est valable.

3 Exercices à faire

Exercice 3 = Exercice 1.2 (d) [TXB]

Soit le signal continu x(t) représenté ci-dessous.

t

x(t)

−2 −1 1 2
−1

2

1

Tracer le signal suivant :
x(4 − t

2).

Schéma de résolution : transformation affine
• Identifier la transformation : décalage temporel vers la droite/gauche ? inversion

temporelle ? contraction/dilatation ? transformation affine ?
• S’il y a plusieurs transformations, identifier l’ordre des opérations INVERSES (ou

utiliser l’astuce mnémotechnique)
• Dessiner les transformations

Exercice 4 = Exercice 3.1 (f) [TXB]
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Déterminer si le système continu correspondant à la relation entrée-sortie donnée ci-après est
• dynamique ou statique ;
• causal, anti-causal ou non causal ;
• linéaire ou non ;
• variant ou invariant.

(f) y(t) = u( t
3)

Exercice 5 = Exercices 3.15 (a) - (c) [TXB]

Étudier la linéarité et l’invariance des systèmes suivants.
(a) ẏ(t) + 2y(t) = u(t2)
(c) ẏ(t) + a y(t) = u(t) avec a ∈ R constant

Schéma de résolution : identifier les propriétés d’une équation différentielle
• Linéarité : pour cet exercice, pas besoin de refaire la démonstration. Regarder

si les signaux d’entrée et/ou de sortie sont exprimés au travers de fonctions non
linéaires (ex :

√
y(t) , ẏy , cos(u(t)) , ...)

• Invariance : regarder si les coefficients dépendent ou non du temps ou faire la
démo.

Rappelez-vous de vos cours d’Analyse sur l’étude d’équations différentielles, des no-
tions similaires avaient été abordées telles que les équations différentielles linéaires à
coefficients constants par exemple.

Exercice 6 = Interro 2013 - Q3 cliquer ici ou sur le site ex 2 ou ex 3.7 [TXB]

Étudier la linéarité et l’invariance des deux systèmes ci-dessous. Justifier la réponse en détail : donner
une démonstration explicite, e.g., par contre-exemple pour les propriétés non satisfaites.

(i) y(t) = sin(u(t)) = (sin ◦u)(t) = sin(u(t))
(ii) y(t) = u(sin(t)) = (u ◦ sin)(t) = u(sin(t))

4 Pour s’exercer

Exercice 7 = Exercice 3.9 [TXB]

Caractérisez
(a) un phénomène physique susceptible de mettre en défaut l’hypothèse de linéarité d’un modèle de

circuit électrique.
(b) un phénomène physique susceptible de mettre en défaut l’hypothèse d’invariance d’un modèle

de circuit électrique.

Exercice 8 = Exercice 3.12 (a) [TXB]

Pour chacune des questions suivantes, sélectionner la bonne réponse sur base d’une courte justification.
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Un seul des trois systèmes suivants est linéaire et statique, lequel ?
(i) y1(t) = t2u(t)
(ii) y2(t) = u(t + 1)
(iii) y3(t) = u̇(t)
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Les solutions seront disponibles après le TP.
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